GARCH och EWMA 21 maj 2010 av David Harper, CFA, FRM, CIPM AIM: Jämför, kontrastera och beräkna parametriska och icke parametriska tillvägagångssätt för att uppskatta villkorlig volatilitet 8230 Inklusive: GARCH APPROACH Inklusive: EXPONENTIAL SMOOTHING (EWMA) Exponentiell utjämning (villkorlig parametrisk) Moderna metoder lägger större vikt vid ny information. Både EWMA och GARCH lägger större vikt vid ny information. Dessutom, eftersom EWMA är ett speciellt fall av GARCH, utnyttjar både EWMA och GARCH exponentiell utjämning. GARCH (p, q) och i synnerhet GARCH (1, 1) GARCH (p, q) är en allmän autoregressiv villkorad heteroskedastisk modell. Viktiga aspekter är: Autoregressive (AR). tomorrow8217s varians (eller volatilitet) är en regressionsfunktion av today8217s variance8212it regresserar sig själv Conditional (C). tomorrow8217s varians beror8212 är villkorat på8212 den senaste variansen. En ovillkorlig varians skulle inte bero på today8217s varians Heteroskedastic (H). variationer är inte konstanta, de fluxar över tiden GARCH regressar på 8220lagged8221 eller historiska termer. De försenade termerna är antingen varians eller kvadrerade avkastningar. Den generiska GARCH-modellen (p, q) regrar på (p) kvadrerade avkastningar och (q) avvikelser. Därför GARCH (1, 1) 8220lags8221 eller regrar på den senaste perioden8217s kvadrerade retur (dvs bara 1 retur) och sista perioden8217s varians (dvs bara 1 varians). GARCH (1, 1) ges av följande ekvation. Samma GARCH (1, 1) formel kan ges med grekiska parametrar: Hull skriver samma GARCH ekvation som: Den första termen (gVL) är viktig eftersom VL är den långsiktiga genomsnittliga variansen. Därför är (gVL) en produkt: det är den viktade långsiktiga genomsnittliga variansen. GARCH-modellen (1, 1) löser för villkorlig varians som en funktion av tre variabler (tidigare varians, tidigare retur2 och långvarig varians): Persistens är en funktion inbäddad i GARCH-modellen. Tips: I ovanstående formler är persistens (b c) eller (alfa-1 beta). Persistens hänvisar till hur snabbt (eller långsamt) variansen återgår eller 8220decays8221 mot dess långsiktiga medelvärde. Hög persistens motsvarar långsam fördröjning och långsam 8220regression mot medel8221 låg persistens motsvarar snabb fördröjning och snabb 8220-omvandling till medelvärdet.8221 En persistens av 1,0 betyder ingen genomsnittsbackning. En persistens på mindre än 1,0 innebär 8220 omvandling till medelvärdet, 8221, där en lägre persistens innebär större återgång till medelvärdet. Tips: Som ovan är summan av vikterna som tilldelas den fördröjda variansen och fördröjda kvadrerade avkastningen persistens (bc persistens). En hög persistens (större än noll men mindre än en) innebär långsam omgång till medelvärdet. Men om vikterna som tilldelas den fördröjda variansen och fördröjda kvadrerade avkastningen är större än en, är modellen icke-stationär. Om (bc) är större än 1 (om bc gt 1) är modellen icke-stationär och, enligt Hull, instabil. I vilket fall föredras EWMA. Linda Allen säger om GARCH (1, 1): GARCH är både 8220compact8221 (dvs relativt enkel) och anmärkningsvärt noggrann. GARCH-modellerna dominerar i vetenskaplig forskning. Många variationer av GARCH-modellen har försökt, men få har förbättrats på originalet. Nackdelen med GARCH-modellen är dess nonlinearitet sic Till exempel: Lös för långvarig varians i GARCH (1,1) Tänk på GARCH (1, 1) ekvation nedan: Antag att: alfaparametern 0,2, beta-parametern 0,7, och notera att omega är 0,2 men don8217t misstänker omega (0,2) för den långvariga variansen Omega är en produkt av gamma och den långvariga variansen. Så, om alpha beta 0.9 måste gamma vara 0,1. Med tanke på att omega är 0,2 vet vi att den långsiktiga variansen måste vara 2,0 (0,2 184 0,1 2,0). GARCH (1,1): Mer notationsskillnad mellan Hull och Allen EWMA är ett speciellt fall av GARCH (1,1) och GARCH (1,1) är ett generaliserat fall av EWMA. Den stora skillnaden är att GARCH innehåller ytterligare termen för genomsnittlig reversering och EWMA saknar en genomsnittlig reversion. Så här kommer vi från GARCH (1,1) till EWMA: Sedan låt vi 0 och (bc) 1, så att ovanstående ekvation förenklas till: Detta motsvarar nu formeln för exponentiellt vägt glidande medelvärde (EWMA): I EWMA bestämmer lambda-parametern nu 8220decay: 8221 en lambda som ligger nära en (hög lambda) uppvisar långsamt sönderfall. RiskMetricsTM Approach RiskMetrics är en märkesform av exponentialvägt glidande medelvärde (EWMA): Den optimala (teoretiska) lambda varierar efter tillgångsklass, men den övergripande optimala parametern som används av RiskMetrics har varit 0.94. I praktiken använder RiskMetrics endast en nedbrytningsfaktor för alla serier: 183 0,94 för dagliga data 183 0,97 för månadsdata (månad definierad som 25 handelsdagar) Tekniskt sett är dagliga och månatliga modeller inkonsekventa. De är dock båda lätta att använda, de approximerar beteendet hos faktiska data ganska bra, och de är robusta till misspecifikation. Obs! GARCH (1, 1), EWMA och RiskMetrics är parametriska och rekursiva. Rekursiva EWMA-fördelar och nackdelar med MA (dvs. STDEV) vs GARCH Grafisk sammanfattning av parametriska metoder som tilldelar mer vikt till senaste avkastning (GARCH amp EWMA) Sammanfattningstips: GARCH (1, 1) är generaliserade RiskMetrics och omvänt är RiskMetrics begränsat fall av GARCH (1,1) där en 0 och (bc) 1. GARCH (1, 1) ges av: De tre parametrarna är vikter och därför måste summa till en: Tips: Var försiktig med första termen i GARCH (1, 1) ekvation: omega () gamma () (genomsnittlig långvarig varians). Om du uppmanas till variansen kan du behöva dela upp vikten för att beräkna den genomsnittliga variansen. Bestäm när och huruvida en GARCH - eller EWMA-modell ska användas i volatilitetsuppskattning. I praktiken tenderar variansräntorna att vara genomsnittliga. Därför är GARCH (1, 1) - modellen teoretiskt överlägsen (8220 mer tilltalande än8221) till EWMA-modellen. Kom ihåg att that8217s är den stora skillnaden: GARCH lägger till parametern som väger det långsiktiga genomsnittet och innehåller därför genomsnittsbackning. Tips: GARCH (1, 1) är att föredra om inte den första parametern är negativ (vilket är underförstått om alfa beta gt 1). I detta fall är GARCH (1,1) instabil och EWMA är föredragen. Förklara hur GARCH-uppskattningarna kan ge prognoser som är mer exakta. Det rörliga medlet beräknar variansen baserat på ett efterföljande fönster av observationer, t. ex. de föregående tio dagarna, de föregående 100 dagarna. Det finns två problem med glidande medelvärdet (MA): Ghosting-funktionen: Volatilitetschocker (plötsliga ökningar) inkorporeras plötsligt i MA-metriska och då, när bakfönstret passerar, faller de brått från beräkningen. På grund av detta kommer MA-metriska att skifta i förhållande till den valda fönstervängden. Trendinformation är inte införlivad. GARCH-uppskattningar förbättrar dessa svagheter på två sätt: Nyare observationer har tilldelats större vikter. Detta övervinner spöken eftersom en volatilitetschock omedelbart kommer att påverka uppskattningen men dess inflytande kommer att blekna gradvis när tiden går. En term läggs till för att införliva reversion till medelvärdet. Förklara hur uthållighet är relaterad till återgången till medelvärdet. GARCH (1, 1) ekvation: Persistens ges av: GARCH (1, 1) är instabilt om persistensen gt 1. En persistens av 1,0 indikerar ingen genomsnittlig reversion. En låg persistens (t ex 0,6) indikerar snabbt förfall och hög reversering till medelvärdet. Tips: GARCH (1, 1) har tre vikter som tilldelas tre faktorer. Persistens är summan av vikterna som tilldelas både den fördröjda variansen och fördröjda kvadrerade avkastningen. Den andra vikten tilldelas den långvariga variansen. Om P-persistens och G-vikt tilldelas långvarig varians, då PG 1. Därför är P (persistens) hög, då G (medelbackning) låg: den ihållande serien är inte starkt medelvärdet återgår den uppvisar 8220slow decay8221 mot betyda. Om P är låg måste G vara hög: den impersistenta serien betyder starkt att den återgår, den uppvisar 8220rapid decay8221 mot medelvärdet. Den genomsnittliga, ovillkorliga variansen i GARCH (1, 1) - modellen ges av: Förklara hur EWMA systematiskt rabatterar äldre data och identifiera RiskMetrics174 dagliga och månatliga nedbrytningsfaktorer. Det exponentiellt vägda glidande medlet (EWMA) ges av: Ovanstående formel är en rekursiv förenkling av 8220true8221 EWMA-serien som ges av: I EWMA-serien är varje vikt som tilldelats kvadrerade avkastningarna ett konstant förhållande av föregående vikt. Specifikt är lambda (l) förhållandet mellan närliggande vikter. På så sätt diskuteras äldre data systematiskt. Den systematiska rabatten kan vara gradvis (långsam) eller abrupt, beroende på lambda. Om lambda är hög (t ex 0,99), är diskonteringen mycket gradvis. Om lambda är låg (t ex 0,7) är diskonteringen mer abrupt. RiskMetrics TM sönderfallsfaktorer: 0,94 för dagliga data 0,97 för månadsdata (månad definierad som 25 handelsdagar) Förklara varför prognoskorrelationer kan vara viktigare än prognosvolatiliteter. Vid mätning av portföljrisk kan korrelationer vara viktigare än enskilda instrumentvolatilitetsvarianter. I samband med portföljrisk kan en korrelationsprognos därför vara viktigare än de enskilda volatilitetsprognoserna. Använd GARCH (1, 1) för att prognostisera volatilitet Den förväntade framtida variansgraden, i (t) perioder framåt, ges av: Antag exempelvis att en nuvarande volatilitetsuppskattning (period n) ges av följande GARCH (1, 1) ) ekvation: I detta exempel är alfabetet den vikt (0,1) som tilldelats den föregående kvadrerade avkastningen (den tidigare avkastningen var 4), beta är vikten (0.7) tilldelad den tidigare variansen (0.0016). Vad är den förväntade framtida volatiliteten, om tio dagar (n 10) Först lösa den långsiktiga variansen. Det är inte 0.00008 denna term är produkten av variansen och dess vikt. Eftersom vikten måste vara 0,2 (1 - 0,1-0,7), den långa variationen 0.0004. För det andra behöver vi nuvarande varians (period n). Det är nästan givet till oss ovan: Nu kan vi tillämpa formeln för att lösa den förväntade framtida variansräntan: Det här är den förväntade variansräntan, så den förväntade volatiliteten är cirka 2,24. Lägg märke till hur det här fungerar: den nuvarande volatiliteten är cirka 3,69 och den långsiktiga volatiliteten är 2. Den 10-dagars framåtprojektionen 8220fades8221 den nuvarande kursen närmare den långa räntan. Nonparametric Volatility ForecastingMoving genomsnittliga och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga gångmodeller och linjära trendmodeller, nonseasonal mönster och trender extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-without-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde har en effekt att utjämna stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet av Y vid tiden t1 som är gjord vid tiden t motsvarar det enkla genomsnittet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserie Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2, vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom den sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är mycket stor (jämförbar med längden på uppskattningsperioden), motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotkvoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därmed väljer den mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (det lokala medelvärdet). Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga promenadmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktsmedel: Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över 3 term och medellång sikt, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. (Return to top of page.) Browns Enkel exponentiell utjämning (exponentiellt viktad glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de sista k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet på L vid tid t beräknas rekursivt från sitt eget tidigare värde så här: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till det senaste observation. Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformeln är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given genomsnittlig ålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Exempelvis har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid Samtidigt gör det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallen för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervall för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA (0,1,1) modell utan konstant till serien som analyseras här, visar den uppskattade MA (1) - koefficienten sig att vara 0.7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-sekundär skillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Det går inte att göra detta i samband med säsongjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend för en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan beräknas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Återgå till början av sidan.) Browns Linear (ie double) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande tillväxt eller ett cykliskt mönster som står klart mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiell utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet på S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer in en begränsning av de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell adresserar problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet av 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I detta fall visar det sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att beräkna trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som beräknas beräkna en lokal trend. Om du 8220eyeball8221 ser det här, ser det ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi till exempel väljer att ställa in 946 0,1, är medelåldern för de data som används vid uppskattning av den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s vad prognosplottet ser ut om vi sätter 946 0,1 samtidigt som ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär. Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara oskäligt att extrapolera kortsiktiga linjära trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörelse, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre utom provet än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i sina trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte alla mjukvaror beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.) Att undersöka exponentiellt viktad rörlig genomsnittsvolatilitet är den vanligaste riskmåtten, men den kommer i flera smaker. I en tidigare artikel visade vi hur man beräkna enkel historisk volatilitet. (För att läsa den här artikeln, se Använd volatilitet för att mäta framtida risk.) Vi använde Googles faktiska aktiekursdata för att beräkna den dagliga volatiliteten baserat på 30 dygns lagerdata. I den här artikeln kommer vi att förbättra den enkla volatiliteten och diskutera exponentialvägt rörligt medelvärde (EWMA). Historisk Vs. Implicit Volatilitet Först, låt oss sätta denna mätning i lite perspektiv. Det finns två breda tillvägagångssätt: historisk och underförstådd (eller implicit) volatilitet. Det historiska tillvägagångssättet förutsätter att förflutet är en prolog som vi mäter historia i hopp om att det är förutsägbart. Implicit volatilitet, å andra sidan, ignorerar historien den löser för volatiliteten implicerad av marknadspriser. Det hoppas att marknaden vet bäst och att marknadspriset innehåller, även om det implicit är, en konsensusuppskattning av volatiliteten. (För relaterad läsning, se Användning och gränser för volatilitet.) Om vi fokuserar på bara de tre historiska tillvägagångssätten (till vänster ovan), har de två steg gemensamt: Beräkna serien av periodisk avkastning Använd ett viktningsschema Först vi beräkna den periodiska avkastningen. Det är typiskt en serie av dagliga avkastningar där varje avkastning uttrycks i fortlöpande sammansatta termer. För varje dag tar vi den naturliga loggen av förhållandet mellan aktiekurserna (dvs. pris idag dividerat med pris igår, och så vidare). Detta ger en serie dagliga avkastningar, från dig till jag i-m. beroende på hur många dagar (m dagar) vi mäter. Det får oss till det andra steget: Det är här de tre metoderna skiljer sig åt. I den föregående artikeln (Använd volatilitet för att mäta framtida risker) visade vi att enligt enkla acceptabla förenklingar är den enkla variansen genomsnittet av de kvadrerade avkastningarna: Observera att summan av varje periodisk avkastning delar upp den totala av antal dagar eller observationer (m). Så det är verkligen bara ett genomsnitt av den kvadrerade periodiska avkastningen. Sätt på ett annat sätt, varje kvadrerad retur ges lika vikt. Så om alfa (a) är en viktningsfaktor (specifikt en 1m) ser en enkel varians något ut så här: EWMA förbättras på enkel varians Svagheten i denna metod är att alla avkastningar tjänar samma vikt. Yesterdays (väldigt ny) avkastning har inget mer inflytande på variansen än förra månaden tillbaka. Detta problem fastställs med hjälp av det exponentiellt vägda glidande medlet (EWMA), i vilket nyare avkastning har större vikt på variansen. Det exponentiellt viktade glidande medlet (EWMA) introducerar lambda. som kallas utjämningsparametern. Lambda måste vara mindre än en. Under detta förhållande, istället för lika vikter, vägs varje kvadrerad avkastning med en multiplikator enligt följande: RiskMetrics TM, ett finansiellt riskhanteringsföretag tenderar till exempel att använda en lambda på 0,94 eller 94. I det här fallet är den första ( senaste) kvadratiska periodiska avkastningen vägs av (1-0,94) (.94) 0 6. Nästa kvadrerade retur är helt enkelt en lambda-multipel av den tidigare vikten i detta fall 6 multiplicerad med 94 5,64. Och den tredje föregående dagens vikt är lika med (1-0,94) (0,94) 2 5,30. Det är betydelsen av exponentiell i EWMA: varje vikt är en konstant multiplikator (dvs lambda, som måste vara mindre än en) av föregående dagsvikt. Detta säkerställer en varians som är viktad eller förspänd mot senare data. (Mer information finns i Excel-kalkylbladet för Googles volatilitet.) Skillnaden mellan helt enkelt volatilitet och EWMA för Google visas nedan. Enkel volatilitet väger effektivt varje periodisk avkastning med 0,196 som visas i kolumn O (vi hade två års daglig aktiekursdata, det vill säga 509 dagliga avkastningar och 1509 0,196). Men märker att kolumn P tilldelar en vikt av 6, sedan 5,64, sedan 5,3 och så vidare. Det är den enda skillnaden mellan enkel varians och EWMA. Kom ihåg: När vi summerar hela serien (i kolumn Q) har vi variansen, vilket är kvadraten av standardavvikelsen. Om vi vill ha volatilitet, måste vi komma ihåg att ta kvadratroten av den variansen. Vad är skillnaden i den dagliga volatiliteten mellan variansen och EWMA i Googles fall Det är signifikant: Den enkla variansen gav oss en daglig volatilitet på 2.4 men EWMA gav en daglig volatilitet på endast 1,4 (se kalkylbladet för detaljer). Uppenbarligen avtog Googles volatilitet mer nyligen, därför kan en enkel varians vara konstant hög. Dagens Varians är en funktion av Pior Days Variance Du märker att vi behövde beräkna en lång serie exponentiellt sjunkande vikter. Vi brukar inte göra matematiken här, men en av EWMA: s bästa egenskaper är att hela serien reduceras bekvämt till en rekursiv formel: Rekursiv betyder att dagens variansreferenser (det vill säga är en funktion av den tidigare dagens varians). Du kan även hitta denna formel i kalkylbladet, och det ger exakt samma resultat som longhandberäkningen. Det står: Dagens varians (under EWMA) motsvarar ysterdays variance (viktad av lambda) plus ysterdays squared return (vägd av en minus lambda). Lägg märke till hur vi bara lägger till två termer tillsammans: Vardagens viktiga varians och gårdagens viktiga, kvadrerade avkastning. Ändå är lambda vår utjämningsparameter. En högre lambda (t ex som RiskMetrics 94) indikerar långsammare sönderfall i serien - relativt sett kommer vi att ha fler datapunkter i serien och de kommer att falla av långsammare. Å andra sidan, om vi reducerar lambda, indikerar vi högre sönderfall: vikterna faller av snabbare och som ett direkt resultat av det snabba förfallet används färre datapunkter. (I kalkylbladet är lambda en ingång, så du kan experimentera med sin känslighet). Sammanfattning Volatilitet är den aktuella standardavvikelsen för ett lager och den vanligaste riskvärdet. Det är också kvadratrot av varians. Vi kan måle variationen historiskt eller implicit (implicit volatilitet). När man mäter historiskt är den enklaste metoden enkel varians. Men svagheten med enkel varians är alla avkastningar får samma vikt. Så vi står inför en klassisk avvägning: vi vill alltid ha mer data, men ju mer data vi har desto mer beräknas vår beräkning utspädd av avlägsna (mindre relevanta) data. Det exponentiellt viktade glidande genomsnittet (EWMA) förbättras på enkel varians genom att tilldela vikter till periodisk avkastning. Genom att göra det kan vi båda använda en stor urvalsstorlek men ge också större vikt till senare avkastning. (För att se en filmhandledning om detta ämne, besök Bionic Turtle.) En åtgärd av förhållandet mellan en förändring av den mängd som krävdes av ett visst gods och en förändring i priset. Pris. Det totala dollarns marknadsvärde för alla bolagets utestående aktier. Marknadsvärdet beräknas genom att multiplicera. Frexit kort för quotFrench exitquot är en fransk spinoff av termen Brexit, som uppstod när Storbritannien röstade till. En order placerad med en mäklare som kombinerar funktionerna i stopporder med de i en gränsvärde. En stopporderorder kommer att. En finansieringsrunda där investerare köper aktier från ett företag till en lägre värdering än värderingen placerad på. En ekonomisk teori om totala utgifter i ekonomin och dess effekter på produktion och inflation. Keynesian ekonomi utvecklades.
Comments
Post a Comment