Exponentiell vägda glidande medelvärde volatilitets excel


Exponentiellt rörligt medelvärde - EMA BREAKING DOWN Exponentiell rörlig genomsnitts - EMA De 12 och 26-dagars EMA-erna är de mest populära kortsiktiga medelvärdena, och de används för att skapa indikatorer som den rörliga genomsnittliga konvergensdivergensen (MACD) och den procentuella prisoscillatorn (PPO). I allmänhet används 50- och 200-dagars EMA som signaler för långsiktiga trender. Handlare som anställer teknisk analys hittar glidande medelvärden som är mycket användbara och insiktsfulla när de tillämpas korrekt men skapar kaos när de används felaktigt eller felaktigt tolkas. Alla glidande medelvärden som vanligtvis används i teknisk analys är av sin natur slående indikatorer. Följaktligen bör slutsatserna från att tillämpa ett glidande medelvärde till ett visst marknadsdiagram vara att bekräfta en marknadsrörelse eller att indikera dess styrka. Mycket ofta, då en rörlig genomsnittlig indikatorlinje har förändrats för att återspegla ett betydande drag på marknaden har den optimala marknaden för marknadsinträde redan passerat. En EMA tjänar till att lindra detta dilemma till viss del. Eftersom EMA-beräkningen lägger mer vikt på de senaste uppgifterna, kramar prisåtgärden lite snävare och reagerar därför snabbare. Detta är önskvärt när en EMA används för att härleda en handelsinmatningssignal. Tolkning av EMA Liksom alla glidande medelindikatorer är de mycket bättre lämpade för trending marknader. När marknaden är i en stark och hållbar uptrend. EMA-indikatorlinjen visar också en uptrend och vice versa för en nedåtgående trend. En vaksam näringsidkare kommer inte bara att uppmärksamma EMA-linjens riktning utan också förhållandet mellan förändringshastigheten från en stapel till en annan. När prisåtgärden för en stark uppåtriktning börjar prata och vända, kommer EMA: s förändringshastighet från en stapel till nästa att minska till dess att indikatorlinjen plattas och förändringshastigheten är noll. På grund av den försvagande effekten, vid denna punkt, eller till och med några få barer innan, bör prisåtgärden redan ha reverserat. Det följer således att observera en konsekvent minskning i förändringshastigheten hos EMA kan själv användas som en indikator som ytterligare kan motverka det dilemma som orsakas av den släpande effekten av rörliga medelvärden. Vanliga användningar av EMA-EMA används ofta i kombination med andra indikatorer för att bekräfta betydande marknadsrörelser och att mäta deras giltighet. För näringsidkare som handlar intradag och snabba marknader är EMA mer tillämplig. Ofta använder handlare EMA för att bestämma en handelsförskjutning. Till exempel, om en EMA på ett dagligt diagram visar en stark uppåtgående trend, kan en intraday-traderstrategi vara att endast handla från långsidan på en intradag chart. is provkorrelationen mellan X och Y vid tiden t. är provet exponentiell-vägd kovarians mellan X och Y vid tiden t. är provet exponentiell-vägd volatilitet för tidsserien X vid tiden t. är provet exponentiell-vägd volatilitet för tidsserien Y vid tiden t. är utjämningsfaktorn som används i exponentiell viktad volatilitet och kovariansberäkningar. Om ingångsdatauppsättningarna inte har nollvärde, tar EWXCF Excel-funktionen bort medelvärdet från varje provdata på dina vägnar. EWXCF använder EWMA-volatiliteten och EWCOV-representationer som inte antar en långvarig genomsnittsvolatilitet (eller kovarians) och sålunda, för varje prognoshorisont utöver ett steg, returnerar EWXCF ett konstant värde. Referenser Hull, John C. Alternativ, Futures och andra derivat Financial Times Prentice Hall (2003), sid 385-387, ISBN 1-405-886145 Hamilton, J. D. Tidsserieanalys. Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S. Analys av Financial Times Series John Wiley amp SONS. (2005), ISBN 0-471-690740 Relaterade länkarExploring Den exponentiellt viktade Flytta Genomsnittlig volatilitet är det vanligaste måttet på risk, men det kommer i flera smaker. I en tidigare artikel visade vi hur man beräkna enkel historisk volatilitet. (För att läsa den här artikeln, se Använd volatilitet för att mäta framtida risk.) Vi använde Googles faktiska aktiekursdata för att beräkna den dagliga volatiliteten baserat på 30 dygns lagerdata. I den här artikeln kommer vi att förbättra den enkla volatiliteten och diskutera exponentialvägt rörligt medelvärde (EWMA). Historisk Vs. Implicit Volatilitet Först, låt oss sätta denna mätning i lite perspektiv. Det finns två breda tillvägagångssätt: historisk och underförstådd (eller implicit) volatilitet. Det historiska tillvägagångssättet förutsätter att förflutet är en prolog som vi mäter historia i hopp om att det är förutsägbart. Implicit volatilitet, å andra sidan, ignorerar historien den löser för volatiliteten implicerad av marknadspriser. Det hoppas att marknaden vet bäst och att marknadspriset innehåller, även om det implicit är, en konsensusuppskattning av volatiliteten. (För relaterad läsning, se Användning och gränser för volatilitet.) Om vi ​​fokuserar på bara de tre historiska tillvägagångssätten (till vänster ovan), har de två steg gemensamt: Beräkna serien av periodisk avkastning Använd ett viktningsschema Först vi beräkna den periodiska avkastningen. Det är typiskt en serie av dagliga avkastningar där varje avkastning uttrycks i fortlöpande sammansatta termer. För varje dag tar vi den naturliga loggen av förhållandet mellan aktiekurserna (dvs. pris idag dividerat med pris igår, och så vidare). Detta ger en serie dagliga avkastningar, från dig till jag i-m. beroende på hur många dagar (m dagar) vi mäter. Det får oss till det andra steget: Det är här de tre metoderna skiljer sig åt. I den föregående artikeln (Använd volatilitet för att mäta framtida risker) visade vi att enligt enkla acceptabla förenklingar är den enkla variansen genomsnittet av de kvadrerade avkastningarna: Observera att summan av varje periodisk avkastning delar upp den totala av antal dagar eller observationer (m). Så det är verkligen bara ett genomsnitt av den kvadrerade periodiska avkastningen. Sätt på ett annat sätt, varje kvadrerad retur ges lika vikt. Så om alfa (a) är en viktningsfaktor (specifikt en 1m) ser en enkel varians något ut så här: EWMA förbättras på enkel varians Svagheten i denna metod är att alla avkastningar tjänar samma vikt. Yesterdays (väldigt ny) avkastning har inget mer inflytande på variansen än förra månaden tillbaka. Detta problem fastställs med hjälp av det exponentiellt vägda glidande medlet (EWMA), i vilket nyare avkastning har större vikt på variansen. Det exponentiellt viktade glidande medlet (EWMA) introducerar lambda. som kallas utjämningsparametern. Lambda måste vara mindre än en. Under detta förhållande, istället för lika vikter, vägs varje kvadrerad avkastning med en multiplikator enligt följande: RiskMetrics TM, ett finansiellt riskhanteringsföretag tenderar till exempel att använda en lambda på 0,94 eller 94. I det här fallet är den första ( senaste) kvadratiska periodiska avkastningen vägs av (1-0,94) (.94) 0 6. Nästa kvadrerade retur är helt enkelt en lambda-multipel av den tidigare vikten i detta fall 6 multiplicerad med 94 5,64. Och den tredje föregående dagens vikt är lika med (1-0,94) (0,94) 2 5,30. Det är betydelsen av exponentiell i EWMA: varje vikt är en konstant multiplikator (dvs lambda, som måste vara mindre än en) av föregående dagsvikt. Detta säkerställer en varians som är viktad eller förspänd mot senare data. (Mer information finns i Excel-kalkylbladet för Googles volatilitet.) Skillnaden mellan helt enkelt volatilitet och EWMA för Google visas nedan. Enkel volatilitet väger effektivt varje periodisk avkastning med 0,196 som visas i kolumn O (vi hade två års daglig aktiekursdata, det vill säga 509 dagliga avkastningar och 1509 0,196). Men märker att kolumn P tilldelar en vikt av 6, sedan 5,64, sedan 5,3 och så vidare. Det är den enda skillnaden mellan enkel varians och EWMA. Kom ihåg: När vi summerar hela serien (i kolumn Q) har vi variansen, vilket är kvadraten av standardavvikelsen. Om vi ​​vill ha volatilitet, måste vi komma ihåg att ta kvadratroten av den variansen. Vad är skillnaden i den dagliga volatiliteten mellan variansen och EWMA i Googles fall Det är signifikant: Den enkla variansen gav oss en daglig volatilitet på 2.4 men EWMA gav en daglig volatilitet på endast 1,4 (se kalkylbladet för detaljer). Uppenbarligen avtog Googles volatilitet mer nyligen, därför kan en enkel varians vara konstant hög. Dagens Varians är en funktion av Pior Days Variance Du märker att vi behövde beräkna en lång serie exponentiellt sjunkande vikter. Vi brukar inte göra matematiken här, men en av EWMA: s bästa egenskaper är att hela serien reduceras bekvämt till en rekursiv formel: Rekursiv betyder att dagens variansreferenser (det vill säga är en funktion av den tidigare dagens varians). Du kan även hitta denna formel i kalkylbladet, och det ger exakt samma resultat som longhandberäkningen. Det står: Dagens varians (under EWMA) motsvarar ysterdays variance (viktad av lambda) plus ysterdays squared return (vägd av en minus lambda). Lägg märke till hur vi bara lägger till två termer tillsammans: Vardagens viktiga varians och gårdagens viktiga, kvadrerade avkastning. Ändå är lambda vår utjämningsparameter. En högre lambda (t ex som RiskMetrics 94) indikerar långsammare sönderfall i serien - relativt sett kommer vi att ha fler datapunkter i serien och de kommer att falla av långsammare. Å andra sidan, om vi reducerar lambda, indikerar vi högre sönderfall: vikterna faller av snabbare och som ett direkt resultat av det snabba förfallet används färre datapunkter. (I kalkylbladet är lambda en ingång, så du kan experimentera med sin känslighet). Sammanfattning Volatilitet är den aktuella standardavvikelsen för ett lager och den vanligaste riskvärdet. Det är också kvadratrot av varians. Vi kan måle variationen historiskt eller implicit (implicit volatilitet). När man mäter historiskt är den enklaste metoden enkel varians. Men svagheten med enkel varians är alla avkastningar får samma vikt. Så vi står inför en klassisk avvägning: vi vill alltid ha mer data, men ju mer data vi har desto mer beräknas vår beräkning utspädd av avlägsna (mindre relevanta) data. Det exponentiellt viktade glidande genomsnittet (EWMA) förbättras på enkel varians genom att tilldela vikter till periodisk avkastning. Genom att göra det kan vi båda använda en stor urvalsstorlek men ge också större vikt till senare avkastning. (För att se en filmhandledning om detta ämne, besök Bionic Turtle.) En åtgärd av förhållandet mellan en förändring av den mängd som krävdes av ett visst gods och en förändring i priset. Pris. Det totala dollarns marknadsvärde för alla bolagets utestående aktier. Marknadsvärdet beräknas genom att multiplicera. Frexit kort för quotFrench exitquot är en fransk spinoff av termen Brexit, som uppstod när Storbritannien röstade till. En order placerad med en mäklare som kombinerar funktionerna i stopporder med de i en gränsvärde. En stopporderorder kommer att. En finansieringsrunda där investerare köper aktier från ett företag till en lägre värdering än värderingen placerad på. En ekonomisk teori om totala utgifter i ekonomin och dess effekter på produktion och inflation. Keynesian ekonomi utvecklades.

Comments